Stripe Turing structures in a two-dimensional gas discharge system

Abstract
Pattern formation phenomena in current density distributions have been investigated experimentally in a dc-driven planar gas discharge semiconductor system. Patterns are observed and recorded via a light density distribution in the discharge gap, which can be seen through one of the electrodes. Under appropriate conditions the spatially homogeneous discharge glow undertakes a transition into hexagonal or striped patterns as the global current is increased. The observed phenomena are interpreted as a Turing bifurcation into a patterned state. The transition into a striped pattern is studied in detail. Transitions both to stationary and to slowly moving stripe patterns have been observed. It has been ascertained that the typical velocity of stripes, which is of the order of mm/s, is independent of the distance from the bifurcation point in a rather broad range of variation of the bifurcation parameter. The underlying mechanism of pattern formation, as well as the movement of the patterns, is discussed.

This publication has 22 references indexed in Scilit: