Effect of retinal impulse blockage on cytochrome oxidase-rich zones in the macaque striate cortex: I. Quantitative electron-microscopic (EM) analysis of neurons

Abstract
Our previous light-microscopic study indicates that unilateral retinal impulse blockage with tetrodotoxin (TTX) causes a reversible decrease of cytochrome oxidase (CO) in alternating rows of metabolically active zones (puffs) in the adult macaque striate cortex (Wong-Riley & Carroll, 1984b). The goal of the present study was to determine if TTX blockade adversely affects all neurons or only a subpopulation of neurons within the puffs. Three major neuronal types were identified based on mitochondrial CO activities and morphological characteristics. Type A neurons were the most prevalent, consisting of small pyramidal and nonpyramidal neurons that received only symmetrical axosomatic synapses. They had little cytoplasm and relatively low levels of CO activity, and showed the least change with TTX treatment. Type B cells were medium-to-large pyramidal neurons that received exclusively symmetrical axosomatic synapses and were moderately reactive for CO. Impulse blockage caused a decrease in mitochondrial size and packing density, but somal size remained within the control range. Type C cells were medium-sized nonpyramidal neurons contacted by both asymmetrical and symmetrical axosomatic synapses. They contained abundant darkly reactive mitochondria and presumably are metabolically the most active. This cell type suffered the greatest decrease in somal size and packing density of mitochondria, particularly the darkly reactive ones. A rare fourth cell type, type D, was a small, darkly reactive nonpyramidal variety that gave rise to somatodendritic synapses. Their low occurrence prevented statistical analysis under normal and TTX-treated conditions. These data indicate that retinal impulse blockade is most detrimental to the metabolically most active neurons in the adult primate cortical puffs. The alterations are not permanent, because the effects of TTX are fully reversible (Carroll & Wong-Riley, 1987).