Single Higgs-boson production through gamma-gamma scattering within the general 2HDM

Abstract
The production of a single neutral Higgs boson h through (loop-induced) gamma-gamma collisions is explored in the context of the linear colliders within the general Two-Higgs-Doublet Model (2HDM). Two different mechanisms are analyzed: on the one hand, the scattering gamma gamma-> h of two real photons in a gamma-gamma collider; on the other, the more traditional mechanism of virtual photon fusion, e+e- -->e+e- + h. Owing to the peculiar properties of the Higgs boson self-interactions within the general 2HDM, we find that the overall production rates can be boosted up significantly, provided the charged Higgs mass is not too heavy. For example, if the latter is slightly above 100 GeV and, in addition, the lightest CP-even Higgs boson falls in the ballpark of the LEP bound on the SM Higgs mass up to a few hundred GeV, the cross-sections may typically render \sigma(gamma gamma-> h)= 0.1-1 pb and \sigma(e+e- --> e+e- + h)\sim 0.01 pb -- in both cases well above the SM prediction. Although for charged Higgs masses above 300 GeV the rates become virtually insensitive to the Higgs boson self-couplings, a significant tail of non-SM effects produced by the combined contribution of the Yukawa couplings and gauge bosons could still reveal a smoking gun.

This publication has 0 references indexed in Scilit: