Temperature effects in a nonlinear model of monolayer Scheibe aggregates

Abstract
A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the excitons is the two dimensional nonlinear Schrödinger equation with noise. Two limits of the complicated spectrum of the noise are considered: time independent, spatially white noise, simply corresponding to disorder in the arrangement of the molecules, and pure white noise. Parameter values are found by comparison with experiments by Möbius and Kuhn [Isr. J. Chem. 18, 375 (1979)] and order of magnitude estimates given where experiments are not available. The temperature dependent coherence time is found from numerical simulations. Experiments show that the excitons stay coherent during their lifetime. This is in correspondence with the model at temperatures lower than 3 K. To increase this limiting temperature it is found that the dipole-dipole coupling and the exciton-phonon coupling must be decreased significantly.