Remnant Fermi surface in the presence of an underlying instability in layered 1T-TaS_2

Abstract
We report high resolution angle-scanned photoemission and Fermi surface (FS) mapping experiments on the layered transition-metal dichalcogenide 1T-TaS_2 in the quasi commensurate (QC) and the commensurate (C) charge-density-wave (CDW) phase. Instead of a nesting induced partially removed FS in the CDW phase we find a pseudogap over large portions of the FS. This remnant FS exhibits the symmetry of the one-particle normal state FS even when passing from the QC-phase to the C-phase. Possibly, this Mott localization induced transition represents the underlying instability responsible for the pseudogapped FS.

This publication has 0 references indexed in Scilit: