Significance of changes in the reference position for measurements of tibial translation and diagnosis of cruciate ligament deficiency
- 1 March 2000
- journal article
- research article
- Published by Wiley in Journal of Orthopaedic Research
- Vol. 18 (2) , 176-182
- https://doi.org/10.1002/jor.1100180203
Abstract
Measurements of tibial translation in response to an external load are used in clinical and laboratory settings to diagnose and characterize knee-ligament injuries. Before these measurements can be quantified, a reference position of the knee must be established (defined as the position of the knee with no external forces or moments applied). The objective of this study was to determine the effects of cruciate ligament deficiency on this reference position and on subsequent measurements of tibial translation and, in so doing, to establish a standard of kinematic measurement for future biomechanical studies. Thirty-six human cadaveric knees were studied with a robotic/universal force-moment sensor testing system. The reference positions of the intact and posterior cruciate ligament-deficient knees of 18 specimens were determined at full extension and at 30, 60, 90, and 120° of flexion, and the remaining five-degree-of-freedom knee motion was unrestricted. Subsequently, under a 134-N anterior-posterior load, the resulting knee kinematics were measured with respect to the reference positions of the intact and posterior cruciate ligament-deficient knees. With posterior cruciate ligament deficiency, the reference position of the knee moved significantly in the posterior direction, reaching a maximal shift of 9.3 ± 3.8 mm at 90° of flexion. For the posterior cruciate ligament-deficient knee, posterior tibial translation ranged from 13.0 ± 3.4 to 17.7 ± 3.6 mm at 30 and 90° respectively, when measured with respect to the reference positions of the intact knee. When measured with respect to the reference positions of the posterior cruciate ligament-deficient knee, these values were significantly lower, ranging from 11.7 ± 4.3 mm at 30° of knee flexion to 8.4 ± 4.8 mm at 90°. A similar protocol was performed to study the effects of anterior cruciate ligament deficiency on 18 additional knees. With anterior cruciate ligament deficiency, only a very small anterior shift in the reference position was observed. Overall, this shift did not significantly affect measurements of tibial translation in the anterior cruciate ligament-deficient knee. Thus, when the tibial translation in the posterior cruciate ligament-injured knee is measured when the reference position of the intact knee is not available, errors can occur and the measurement may not completely reflect the significance of posterior cruciate ligament deficiency. However, there should be less corresponding error when measuring the tibial translation of the anterior cruciate ligament-injured knee because the shift in reference position with anterior cruciate ligament deficiency is too small to be significant. We therefore recommend that in the clinical setting, where the reference position of the knee changes with injury, comparison of total anterior-posterior translation with that of the uninjured knee can be a more reproducible and accurate measurement for assessing cruciate-ligament injury, especially in posterior cruciate ligament-injured knees. Similarly, in biomechanical testing where tibial translations are often reported for the ligament-deficient and reconstructed knees, a fixed reference position should be chosen when measuring knee kinematics. If such a standard is set, measurements of knee kinematics will more accurately reflect the altered condition of the knee and allow valid comparisons between studies.Keywords
This publication has 37 references indexed in Scilit:
- Intratester and Intertester Reliability of the KT-1000 Arthrometer in the Assessment of Posterior Laxity of the KneeThe American Journal of Sports Medicine, 1997
- In Vitro Study of Knee Stability After Posterior Cruciate Ligament ReconstructionPublished by Wolters Kluwer Health ,1996
- The Effect of Femoral Tunnel Position and Graft Tensioning Technique on Posterior Laxity of the Posterior Cruciate Ligament-Reconstructed KneeThe American Journal of Sports Medicine, 1995
- The role of the lateral extraarticular restraints in the anterior cruciate ligament-deficient kneeThe American Journal of Sports Medicine, 1993
- Assessing the limits of knee motionThe American Journal of Sports Medicine, 1991
- Instrumented Testing for Evaluation of Sagittal Knee LaxityClinical Orthopaedics and Related Research, 1990
- Measurements of Anterior Laxity in Normal and Anterior Cruciate Absent Knees with Two Instrumented Test DevicesPublished by Wolters Kluwer Health ,1987
- Accuracy and reproducibility of instrumented knee‐drawer testsJournal of Orthopaedic Research, 1987
- Posterior Cruciate Ligament InsufficiencySports Medicine, 1984
- The function of the primary ligaments of the knee in anterior-posterior and medial-lateral motionsJournal of Biomechanics, 1980