Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments

Abstract
Approximate t-tests of single degree of freedom hypotheses in generalized least squares analyses (GLS) of mixed linear models using restricted maximum likelihood (REML) estimates of variance components have been previously developed by Giesbrecht and Burns (GB), and by Jeske and Harville (JH), using method of moment approximations for the degrees of freedom (df) for the tstatistics. This paper proposes approximate Fstatistics for tests of multiple df hypotheses using one-moment and two-moment approximations which may be viewed as extensions of the GB and JH methods. The paper focuses specifically on tests of hypotheses concerning the main-plot treatment factor in split-plot experiments with missing data. Simulation results indicate usually satisfactory control of Type I error rates.