Effect of water absorption of dielectric underlayers on crystal orientation in Al–Si–Cu/Ti/TiN/Ti metallization

Abstract
The influence of the exposure of underlying dielectric (phophosilicate glass and borophosphosilicate glass) films to a humid air ambient on crystallographic orientations in Al–Si–Cu/Ti/TiN/Ti layered structures has been investigated as a function of the boron content and exposure time of the dielectric films. The Al(111) orientation in the layered structures was found to improve drastically with increasing boron content and exposure time of the dielectric films. The full width at half maximum value of an Al(111) x-ray rocking curve reached less than 1°. It was also found that the Al–Si–Cu surface becomes smoother and the average grain size increases as the Al(111) orientation improves. The improved Al(111) orientation was attributed to the improved Ti(002) orientation of the bottom Ti films. The mechanism of the improved Ti(002) orientation was investigated. It was confirmed that the improved orientation is closely related with the surface concentration of the absorbed water in the dielectric films. Further, it was demonstrated that interconnects fabricated from the improved layered structure have excellent electromigration performance.