The Flag-Transitive Collineation Groups of the Finite Desarguesian Affine Planes
- 1 January 1964
- journal article
- Published by Canadian Mathematical Society in Canadian Journal of Mathematics
- Vol. 16, 443-472
- https://doi.org/10.4153/cjm-1964-047-3
Abstract
Let π be the Desarguesian affine plane of order n = pr, for p a prime and r a positive integer. A collineation group G of π is defined to be flag-transitive on π if G is transitive on the set of incident point-line pairs, or flags, of π. Further, G is doubly transitive on π if G is doubly transitive on the points of π. Clearly, G is flag transitive if G is doubly transitive on π.The purpose of the following study is the explicit determination of the flagtransitive and the doubly transitive collineation groups of π (I am indebted to D. G. Higman for suggesting this problem). The results can be summarized in Theorems 1′ and 2′ below (a complete description of the results is contained in Sections 12-15).Keywords
This publication has 9 references indexed in Scilit:
- On collineation groups of projective spaces. IMathematische Zeitschrift, 1961
- An Introduction to Homological AlgebraPublished by Cambridge University Press (CUP) ,1960
- On projective and affine planes with transitive collineation groupsMathematische Zeitschrift, 1959
- Zweifach transitive, aufl sbare PermutationsgruppenMathematische Zeitschrift, 1957
- Projektive Ebenen über FastkörpernMathematische Zeitschrift, 1955
- Cohomology of group extensionsTransactions of the American Mathematical Society, 1953
- Kennzeichnung endlicher linearer Gruppen als PermutationsgruppenAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 1935
- Galois field tables for 𝑝ⁿ≦169Bulletin of the American Mathematical Society, 1905
- On the Integral Divisors of a n - b nAnnals of Mathematics, 1904