Calabi-Yau fourfolds for M- and F-Theory compactifications

Abstract
We investigate topological properties of Calabi-Yau fourfolds and consider a wide class of explicit constructions in weighted projective spaces and, more generally, toric varieties. Divisors which lead to a non-perturbative superpotential in the effective theory have a very simple description in the toric construction. Relevant properties of them follow just by counting lattice points and can be also used to construct examples with negative Euler number. We study nets of transitions between cases with generically smooth elliptic fibres and cases with ADE gauge symmetries in the N=1 theory due to degenerations of the fibre over codimension one loci in the base. Finally we investigate the quantum cohomology ring of this fourfolds using Frobenius algebras.

This publication has 0 references indexed in Scilit: