Quenching an expanding chiral condensate

Abstract
We simulate quenching in the O(4) σ model of hadronic matter expanding along the z axis, with randomly generated initial conditions imposed at a given boost invariant time τ0= √t2-z2 . A comparison of our results with the simulations of Rajagopal and Wilczek for a nonexpanding case shows that the normalized power exhibits approximately the same frequency of oscillations in the laboratory time in both cases. However, the response of the expanding system depends on τ0: e.g., for τ0=1 fm it is about 2 orders of magnitude smaller than for the nonexpanding system. Also, the relaxation time becomes shorter with expansion present. When τ0→∞ the two cases become identical. Kinematical windows for the production of a disoriented chiral condensate are also discussed.