Self-trapping in quasi-one-dimensional electron- and exciton-phonon systems

Abstract
We study self-trapping of electrons (excitons) in one-dimensional systems with three realistic types of coupling with phonons, applying a variational procedure valid for the whole range of system parameters. Various types of self-trapped states are identified and mapped in the parameter space. Our results are compared to the results of previous studies. The particular case of biological systems is studied and it is shown that the Davydov-soliton concept can be used for the description of electron transport in biological systems, but not for the energy transfer in terms of amide-I vibrations (CO stretching vibration mode).

This publication has 30 references indexed in Scilit: