Stringing Spins and Spinning Strings
Abstract
We apply recently developed integrable spin chain and dilatation operator techniques in order to compute the planar one-loop anomalous dimensions for certain operators containing a large number of scalar fields in N =4 Super Yang-Mills. The first set of operators, belonging to the SO(6) representations [J,L-2J,J], interpolate smoothly between the BMN case of two impurities (J=2) and the extreme case where the number of impurities equals half the total number of fields (J=L/2). The result for this particular [J,0,J] operator is smaller than the anomalous dimension derived by Frolov and Tseytlin [hep-th/0304255] for a semiclassical string configuration which is the dual of a gauge invariant operator in the same representation. We then identify a second set of operators which also belong to [J,L-2J,J] representations, but which do not have a BMN limit. In this case the anomalous dimension of the [J,0,J] operator does match the Frolov and Tseytlin prediction. We also show that fluctuation spectra for this [J,0,J] operator is consistent with the string prediction.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: