Satellite-Based Tropical Cyclone Intensity Estimation Using the NOAA-KLM Series Advanced Microwave Sounding Unit (AMSU)

Abstract
Satellite-borne passive microwave radiometers, such as the Advanced Microwave Sounding Unit (AMSU) on the NOAA polar-orbiting series, are well suited to monitor tropical cyclones (TCs) by virtue of their ability to assess changes in tropospheric warm core structure in the presence of clouds. The temporal variability in TC upper-tropospheric warm anomaly (UTWA) size, structure, and magnitude provides vital information on changes in kinematic structure and minimum sea level pressure (MSLP) through well-established thermodynamic and dynamic principles. This study outlines the aspects of several factors affecting the effective AMSU measurement accuracy of UTWAs, including the practical application of a previously developed maximum likelihood regression algorithm designed to explicitly correct for TC scan geometry and UTWA–antenna gain pattern interaction issues (UTWA subsampling) unique to TC warm core applications. This single-channel AMSU approach (54.96 GHz) is the first step toward a more elabora... Abstract Satellite-borne passive microwave radiometers, such as the Advanced Microwave Sounding Unit (AMSU) on the NOAA polar-orbiting series, are well suited to monitor tropical cyclones (TCs) by virtue of their ability to assess changes in tropospheric warm core structure in the presence of clouds. The temporal variability in TC upper-tropospheric warm anomaly (UTWA) size, structure, and magnitude provides vital information on changes in kinematic structure and minimum sea level pressure (MSLP) through well-established thermodynamic and dynamic principles. This study outlines the aspects of several factors affecting the effective AMSU measurement accuracy of UTWAs, including the practical application of a previously developed maximum likelihood regression algorithm designed to explicitly correct for TC scan geometry and UTWA–antenna gain pattern interaction issues (UTWA subsampling) unique to TC warm core applications. This single-channel AMSU approach (54.96 GHz) is the first step toward a more elabora...