On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent
Top Cited Papers
- 9 May 2007
- journal article
- research article
- Published by American Mathematical Society (AMS) in Proceedings of the American Mathematical Society
- Vol. 135 (9) , 2929-2937
- https://doi.org/10.1090/s0002-9939-07-08815-6
Abstract
We consider the nonlinear eigenvalue problem \[ − div ( | ∇ u | p ( x ) − 2 ∇ u ) = λ | u | q ( x ) − 2 u -\textrm {div}\left (|\nabla u|^{p(x)-2}\nabla u\right )=\lambda |u|^{q(x)-2}u \] in Ω \Omega , u = 0 u=0 on ∂ Ω \partial \Omega , where Ω \Omega is a bounded open set in R N \mathbb R^N with smooth boundary and p p , q q are continuous functions on Ω ¯ \overline \Omega such that 1 > inf Ω q > inf Ω p > sup Ω q 1>\inf _\Omega q> \inf _\Omega p>\sup _\Omega q , sup Ω p > N \sup _\Omega p>N , and q ( x ) > N p ( x ) / ( N − p ( x ) ) q(x)>Np(x)/\left (N-p(x)\right ) for all x ∈ Ω ¯ x\in \overline \Omega . The main result of this paper establishes that any λ > 0 \lambda >0 sufficiently small is an eigenvalue of the above nonhomogeneous quasilinear problem. The proof relies on simple variational arguments based on Ekeland’s variational principle.All Related Versions
This publication has 23 references indexed in Scilit:
- A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluidsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006
- Existence of solutions for p(x)-Laplacian Dirichlet problemPublished by Elsevier ,2002
- OnLp(x)normsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999
- Electrorheological FluidsScience, 1992
- Density of smooth functions in
W
k, p(x)
( Ω )Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992
- On the Equation div( | ∇u | p-2 ∇u) + λ | u | p-2 u = 0Proceedings of the American Mathematical Society, 1990
- AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORYMathematics of the USSR-Izvestiya, 1987
- On the eigenvalues and eigenfunctions of elastic platesCommunications on Pure and Applied Mathematics, 1950
- Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian ManifoldsCanadian Journal of Mathematics, 1949
- The smallest characteristic numbers in a certain exceptional caseBulletin of the American Mathematical Society, 1914