Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form
- 1 September 2006
- journal article
- research article
- Published by Taylor & Francis in Econometric Reviews
- Vol. 25 (2-3) , 219-244
- https://doi.org/10.1080/07474930600713275
Abstract
In this paper we model the Gaussian errors in the standard Gaussian linear state space model as stochastic volatility processes. We show that conventional MCMC algorithms for this class of models are ineffective, but that the problem can be alleviated by reparameterizing the model. Instead of sampling the unobserved variance series directly, we sample in the space of the disturbances, which proves to lower correlation in the sampler and thus increases the quality of the Markov chain. Using our reparameterized MCMC sampler, it is possible to estimate an unobserved factor model for exchange rates between a group of n countries. The underlying n + 1 country-specific currency strength factors and the n + 1 currency volatility factors can be extracted using the new methodology. With the factors, a more detailed image of the events around the 1992 EMS crisis is obtained. We assess the fit of competitive models on the panels of exchange rates with an effective particle filter and find that indeed the factor model is strongly preferred by the data.Keywords
All Related Versions
This publication has 44 references indexed in Scilit:
- Central Bank Forex Interventions Assessed Using Realized MomentsSSRN Electronic Journal, 2004
- Mixture Kalman FiltersJournal of the Royal Statistical Society Series B: Statistical Methodology, 2000
- Statistical algorithms for models in state space using SsfPack 2.2The Econometrics Journal, 1999
- Filtering via Simulation: Auxiliary Particle FiltersJournal of the American Statistical Association, 1999
- Bayes FactorsJournal of the American Statistical Association, 1995
- CommentJournal of Business & Economic Statistics, 1994
- DATA AUGMENTATION AND DYNAMIC LINEAR MODELSJournal of Time Series Analysis, 1994
- Partial non-Gaussian state spaceBiometrika, 1994
- A Monte Carlo Approach to Nonnormal and Nonlinear State-Space ModelingJournal of the American Statistical Association, 1992
- The Signal Extraction Approach to Nonlinear Regression and Spline SmoothingJournal of the American Statistical Association, 1983