Calcium Releasing Action of Quercetin on Sarcoplasmic Reticulum from Frog Skeletal Muscle1

Abstract
The release of Ca by quercetin from the sarcoplasmic reticulum has been claimed to be a result of the well-known inhibition of Ca2+-ATPase activity, or to be due to an intrinsic property of quercetin. To get a clearer understanding of the effect of quercetin, we examined it using fragmented sarcoplasmic reticulum (FSR) from bullfrog skeletal muscle. The rapid phase of Ca release (hereafter simply referred to as “Ca release”) from loaded FSR was almost completed within 5 s after addition of quercetin in the presence of ATP. It cannot be ascribed to the inhibition of Ca2+-ATPase activity on the basis of following findings. First, when Ca uptake was driven by carbamylphosphate, no or little Ca release was observed in marked contrast to a stronger reduction in the rate of Ca uptake. Secondly, procaine reverses the Ca releasing action of quercetin, whereas it show a synergistic action in the inhibition of Ca2+-ATPase activity. Thirdly, HFSR released more Ca than LFSR, while the Ca2+-ATPase activities of both fractions were inhibited to a similar extent. The Ca release by quercetin is enhanced by ATP or β,γ-methylene adenosine triphosphate, and decreased by procaine or a high concentration of Mg2+. In the presence of 2.5 mM caffeine, the amount of Ca2+released by quercetin was decreased, and the dose-effect relationship was shifted to higher doses of quercetin. This indicates that quercetin and caffeine probably overlap in the site(s) of the action, but that quercetin is dissimilar from halothane in the mode of its Ca-releasing action.

This publication has 13 references indexed in Scilit: