Oxidative inactivation of the molybdenum-iron-protein component of nitrogenase from clostridium pasteurianum

Abstract
The sensitivity of the molybdenum-iron(MoFe)-protein of Clostridium pasteurianum nitrogenase toward oxidation has been studied by determining the enzymatic activity of this component after incubating it anaerobically in ferricyanide solutions of various oxidizing strengths (as measured by their oxidation potentials). It was found that the MoFe-protein remains active at potentials up to +350 mV (vs. standard hydrogen electrode) but becomes readily inactivated at more oxidizing potentials, after a lag period, depending on the potential level and temperature. Oxidative inactivation by ferricyanide results in the release of most of the Mo, Fe and S atoms from the protein which causes the loss of the absorption bands in the visible region. The metals and sulfur could be re-incorporated by incubation in a mixture containing thiol, sulfide, molybdate, and ferric iron. The EPR spectrum of the oxidatively inactivated MoFe-protein showed that both the high-and low-field signals are readily affected. Reincorporation of the metals and sulfur into the “bleached” protein produced an EPR spectrum similar to that of the air-inactivated protein. Incubation of the Mo-Fe-protein with mersalyl abolished its enzymic activity. The difference spectrum before and after mersalyl treatment resembles that of the soluble spinach ferredoxin.