Computer modeling and the design of optimal underwater imaging systems
- 1 April 1990
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Journal of Oceanic Engineering
- Vol. 15 (2) , 101-111
- https://doi.org/10.1109/48.50695
Abstract
A computer model to simulate the formation of underwater images has been developed. The model incorporates the inherent and apparent properties of the propagation of light in water. An image is approximated as a linear superposition of several image components. The model has been used to simulate the relative advantages of different camera/light configurations. The results indicate that extremely large gains in image contrast can be obtained by careful design of beam patterns and the manipulation of camera and light locations. The performance of range-gated systems is explored, and it is demonstrated that these systems are presently power limited. In order to obtain better quality images at larger distances, an imaging configuration which consists of scanning an incoherent light beam across the field of view of a camera is proposed. The incoherent light-scanning system is shown to have advantages over both conventional imaging techniques and range-gated methods.Keywords
This publication has 6 references indexed in Scilit:
- ARGO: Capabilities for Deep Ocean ExplorationPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1986
- Backscatter Reduction for Artificially Illuminated In-Water Camera SystemsOptical Engineering, 1975
- Imaging Properties of Light Scattered by the Sea*Journal of the Optical Society of America, 1969
- Loss of Resolution in Water as a Result of Multiple Small-Angle ScatteringJournal of the Optical Society of America, 1969
- 2.7 - Underwater optical range gatingIEEE Journal of Quantum Electronics, 1967
- Light in the Sea*Journal of the Optical Society of America, 1963