Abstract
We study time evolution and gravitational wave emission properties of a black hole orbiting {\it inside} an accretion disk surrounding a massive black hole. We simultaneously solve the structure equations of the accretion disk in presence of heating, cooling and viscosity as well as the equations governing the companion orbit. The deviation from Keplerian distribution of angular momentum of the disk due to pressure and advection effects causes a significant exchange of angular momentum between the disk and the companion. This significantly affects the gravitational wave emission properties from the binary system. We show that when the companion is light, the effect is extremely important and must be taken into account while interpreting gravitational wave signals from such systems.

This publication has 0 references indexed in Scilit: