Formulation of a Statistical Theory of Strong Plasma Turbulence
- 1 May 1969
- journal article
- Published by AIP Publishing in Physics of Fluids
- Vol. 12 (5) , 1045-1058
- https://doi.org/10.1063/1.2163666
Abstract
A new formulation of methods introduced by Dupree, and Orszag and Kraichnan, for solving the Vlasov equation for turbulent plasmas based on. algebraic use of an averaging operator is described. Formally exact sets of integrodifferential equations are thereby derived for determining the ensemble average of the one‐particle distribution function, and the electric field spectrum of turbulent plasmas. The formal difference between these equations and the approximate equations of Dupree, and Orszag and Kraichnan, is that the average “Vlasov” propagator U(t,t 0 ) of the latter is replaced by a new propagator U A (t,t 0 ) which involves the averaging operator. The potential usefulness of the present equations can be judged by the fact that, in a simple lowest‐order limit, they immediately reduce to the turbulence equation of Dupree. These equations are used to develop a modified perturbation theory which avoids certain time secularities. Cumulant expansions are introduced to evaluate average “Vlasov” propagators, and to rigorously treat the variation of the diffusion coefficient with velocity. It is explicitly shown that (diffusive) perturbed trajector corrections are equal to mean square deviations from the mean of “Vlasov” trajectories.Keywords
This publication has 8 references indexed in Scilit:
- Turbulent Diffusion, Particle Orbits, and Field Fluctuations in a Plasma in a Magnetic FieldPhysics of Fluids, 1968
- Test Waves in Weakly Turbulent PlasmasPhysics of Fluids, 1967
- A Perturbation Theory for Strong Plasma TurbulencePhysics of Fluids, 1966
- Microscopic Fluctuations and Diffusion Coefficients of a Nonequilibrium Plasma in a Magnetic FieldPhysics of Fluids, 1965
- Diagram-addition method in turbulent-plasma theoryNuclear Fusion, 1964
- Generalized Master Equation for Quantum-Mechanical Systems to all Orders in the DensityPhysical Review B, 1964
- Cluster Formulation of the Exact Equation for the Evolution of a Classical Many-Body SystemPhysical Review B, 1963
- The structure of isotropic turbulence at very high Reynolds numbersJournal of Fluid Mechanics, 1959