A Newton-Raphson Algorithm for Maximum Likelihood Factor Analysis

Abstract
This paper demonstrates the feasibility of using a Newton-Raphson algorithm to solve the likelihood equations which arise in maximum likelihood factor analysis. The algorithm leads to clean easily identifiable convergence and provides a means of verifying that the solution obtained is at least a local maximum of the likelihood function. It is shown that a popular iteration algorithm is numerically unstable under conditions which are encountered in practice and that, as a result, inaccurate solutions have been presented in the literature. The key result is a computationally feasible formula for the second differential of a partially maximized form of the likelihood function. In addition to implementing the Newton-Raphson algorithm, this formula provides a means for estimating the asymptotic variances and covariances of the maximum likelihood estimators.