The canine heart as an electrocardiographic generator. Dependence on cardiac cell orientation.
- 1 July 1977
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 41 (1) , 58-67
- https://doi.org/10.1161/01.res.41.1.58
Abstract
Traditionally it is assumed that during cardiac depolarization the macroscopic current generators that produce electrocardiographic voltages can be represented as a uniform double-layer source, coincident with the macroscopic boundary between resting and depolarized cardiac fibers as measured with extracellular electrodes ("uniform" hypothesis). A segment of this boundary is thus considered as a current dipole oriented perpendicular to the boundary. We present evidence that, contrary to the above, the effective dipoles largely parallel the long axes of cardiac fibers ("axial" hypothesis). Calculated potentials in volume conductors differ markedly in the two cases. The magnitudes of rapid local "intrinsic" deflections also differ markedly. In our experiments, potential fields prodlced by stimulation at several cardiac sites and measured magnitudes of intrinsic deflections during normal depolarization and that caused by stimulation support the axial hypothesis and are incompatible with the uniform hypothesis. Our results suggest that axial orientation of sources is sufficiently strong so that predictions assuming the uniform hypothesis would be seriously in error, although the axial theory alone does not exactly describe all the measured potentials. Axial orientation of current generators must be considered in quantitative prediction of electrocardiographic potentials. tfurther study of the geometry of the intracellular depolarization boundary and its relation to fiber direction and to the frequency of lateral intercellular junctions is required to describe the generators exactly.Keywords
This publication has 19 references indexed in Scilit:
- Computer Model of Cardiac Potential Distribution in an Infinite Medium and on the Human Torso during Ventricular ActivationCirculation Research, 1974
- Action potential and contraction of heart muscleThe American Journal of Cardiology, 1973
- Distributions of Potential in Cylindrical Coordinates and Time Constants for a Membrane CylinderBiophysical Journal, 1969
- A Geometrical Model of Successive Stages in Excitation of the Human Heart; its Value as a Link between Excitation and Clinical VectorcardiographyCardiovascular Research, 1969
- A STRAND OF CARDIAC MUSCLEThe Journal of cell biology, 1967
- VENTRICULAR DEPOLARIZATION AND THE GENESIS OF QRSAnnals of the New York Academy of Sciences, 1957
- RESTING AND ACTION POTENTIALS OF CARDIAC MUSCLEAnnals of the New York Academy of Sciences, 1957
- A comparative analysis of the eccentric double-layer representation of the human heartAmerican Heart Journal, 1953
- Histology of the moderator band in man and other mammals with special reference to the conduction systemJournal of Anatomy, 1947
- Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen VersucheAnnalen der Physik, 1853