• 1 January 1975
    • journal article
    • Vol. 16  (2) , 117-29
Abstract
When using a stereotaxic instrument for visual field stimulation we found that electrode placements in the thalamus and mesencephalon of prone rhesus monkeys with the aid of avaiable atlases showed considerable errors. As these animals are valuable for primate visual system reseach an atlas was constructed with methods that have not been used before for rhesus. In addition, the specific connections from the visual cortices, superior colliculus and retina to the thalamus and mesencephalon are also shown. Anesthetized monkeys of specific body dimensions had a matrix of pins inserted into the brain before fixation. A matrix was used so that the penetrations seen in the sectioned brain could be cross related as a control for accurate measurements of the stereotaxic planes throughout the brain. The surface of the whole brain frozen blocks were photographed on the microtome just before a cut section was taken. These calibrated pictures formed the "floor plan" of the atlas as they represent more accurately the brain geometry than individual sections which are distorted by cutting, staining and mounting. Cytoarchitectural (Nissl stain) and axonal connectional (Fink-Heimer stain) information was transferred and adjusted onto the block pictures from their corresponding stained sections. Follow up experiments showed that the present coordinates are accurate for these monkeys of restricted body dimensions. In addition, referencing visual axonal projections onto the same cytoarchitectural map in stereotaxic coordinates provides an atlas for localizing areas of the thalamus, on a basis other than cytoarchitecture, which receive combinations of visual inputs for further anatomical and physiological studies of the rhesus monkey visual system. The atlas further demonstrates that projections do not necessarily follow the cytoarchitectural definition of an area, but rather redefine the thalamus on the basis of specific axonal connections.