Automatically characterizing large scale program behavior

Abstract
Understanding program behavior is at the foundation of computer architecture and program optimization. Many programs have wildly different behavior on even the very largest of scales (over the complete execution of the program). This realization has ramifications for many architectural and compiler techniques, from thread scheduling, to feedback directed optimizations, to the way programs are simulated. However, in order to take advantage of time-varying behavior, we must first develop the analytical tools necessary to automatically and efficiently analyze program behavior over large sections of execution.Our goal is to develop automatic techniques that are capable of finding and exploiting the We quantify the effectiveness of Basic Block Vectors in capturing program behavior across several different architectural metrics, explore the large scale behavior of several programs, and develop a set of algorithms based on clustering capable of analyzing this behavior. We then demonstrate an application of this technology to automatically determine where to simulate for a program to help guide computer architecture research.

This publication has 8 references indexed in Scilit: