Dynamics of transient pores in stretched vesicles

Abstract
We image macroscopic transient pores in mechanically stretched giant vesicles. Holes open above a critical radius r(c1), grow up to a radius r(c2), and close. We interpret the upper limit r(c2) by a relaxation of the membrane tension as the holes expand. The closing of the holes is caused by a further relaxation of the surface tension when the internal liquid leaks out. A dynamic model fits our data for the growth and closure of pores.