Hypoxia-induced acute changes in capillary and fiber density and capillary red cell distribution in the rat heart.
- 1 April 1989
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 64 (4) , 742-752
- https://doi.org/10.1161/01.res.64.4.742
Abstract
The influence of acute hypoxia (respiration gas 12%, 10%, and 8% O2 and asphyxia, respectively) on 1) the density of perfused capillaries and muscle fibers, and 2) the capillary red cell distribution was investigated in the left heart of anesthetized rats. To observe capillaries and fibers, fluorescein isothiocyanate-labeled (FITC)-gamma-globulin and lissamine-rhodamine-B200-labeled (RB200) myoglobin were injected intravenously as labels of the perfused intravasal and the extracellular space, respectively. The hypoxic conditions were induced subsequently and maintained for 3 minutes. After this period the heart was rapidly frozen for histological demonstration of the dyes. Ventilation with 12% or 10% O2 did not induce any changes in the density of perfused capillaries; however, 8% O2 in respiration gas did lead to a significant increase (capillaries/mm2: subepicardium, 4,180, controls, 3,620; subendocardium, 3,930, controls, 3,240). A similar increase was found in the asphyxia group (capillaries/mm2: subepicardium, 4,170; subendocardium, 3,700). The increases in the density of perfused capillaries were paralleled by rises in fiber density. This leads to the conclusion that the changes in capillary counts were caused by fiber elongation with a resultant decrease in intercapillary distances. This assumption was supported by observations that there were no signs of changes in ventricular segment length during respiration of 12% or 10% O2 but that an increase did occur with 8% oxygen and with asphyxia. Densities of perfused capillaries exactly coincided with anatomical densities (demonstrated by additional labeling of capillary basement membranes with isolectin B4) in normoxic and asphyctic hearts. The distribution of red cells in the capillaries, determined in histological sections, did not differ appreciably under hypoxia due to reduced O2 in respiration air (12%) or asphyxia. The results obtained indicate that 1) extreme hypoxic states cause the capillaries to move closer to each other due to elongation of myocardial fibers and 2) red cell distribution is not altered during these conditions.This publication has 23 references indexed in Scilit:
- Morphometric study of the total and perfused arteriolar and capillary network of the rabbit left ventricleCardiovascular Research, 1985
- Density of plasma-perfused capillaries in the rat heart during carbocromene-induced vasodilationBasic Research in Cardiology, 1983
- Effect of regional hypoxia and blood flow on capillary permeability in canine myocardiumActa Physiologica Scandinavica, 1982
- Functional capillary density in normal and transplanted rat heartsCanadian Journal of Physiology and Pharmacology, 1982
- The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of α-d-galactopyranosyl groupsExperimental Cell Research, 1979
- Changes in Small Vessel Blood Content of the Rat Heart Induced by Hypercapnic, Hyperoxic or Asphyxic ConditionsCardiology, 1978
- Control of coronary intercapillary distance: Effect of arterial PCO2 and pHMicrovascular Research, 1973
- Direct measurement of intercapillary distance in beating rat heart in situ under various conditions of O2 supplyMicrovascular Research, 1969
- LOCALIZED AREAS OF HIGH ALKALINE PHOSPHATASE ACTIVITY IN THE TERMINAL ARTERIAL TREEThe Journal of cell biology, 1962
- On a Test of Whether one of Two Random Variables is Stochastically Larger than the OtherThe Annals of Mathematical Statistics, 1947