Active surface centres in vanadium pentoxide/alkali metal sulphate heterogeneous catalysts for 2-propanol decomposition

Abstract
Infrared spectra of the surfaces of vanadium pentoxide and vanadium pentoxide containing 9.09 mol% caesium and potassium, as sulphates, have been determined after exposure to 2-propanol for various times. Interpretation of the spectra leads to the proposal that the principal source of catalyst activity may be associated with surface hydrogen and hydroxyl groups on V5+ and V4+ sites. The "stability" of the catalysts towards reduction by the alcohol was consistent with the activity series derived from kinetic measurements: V2O5 (pure) < V2O5 (Cs) < V2O5 (K). The degree of sample reduction has also been assessed qualitatively by measurements of the ratio of surface area before to that after reaction and the same catalyst sequence was established. The trend in surface area ratios was similar to that shown by the surface "Tammann" temperatures of vanadium pentoxide and alkali metal sulphates which has been taken to imply that the ease and (or) extent with which the sulphates enter into inter-solid reactions with the oxide in the preparation stage may exert influence on the subsequent reducibility of the individual members of the catalyst series.

This publication has 0 references indexed in Scilit: