Multiple wells in the semi-classical limit I
- 1 January 1984
- journal article
- research article
- Published by Taylor & Francis in Communications in Partial Differential Equations
- Vol. 9 (4) , 337-408
- https://doi.org/10.1080/03605308408820335
Abstract
(1984). Multiple wells in the semi-classical limit I. Communications in Partial Differential Equations: Vol. 9, No. 4, pp. 337-408.This publication has 13 references indexed in Scilit:
- Calcul fonctionnel par la transformation de Mellin et opérateurs admissiblesJournal of Functional Analysis, 1983
- Instantons, double wells and large deviationsBulletin of the American Mathematical Society, 1983
- Asymptotique des niveaux d’énergie pour des hamiltoniens a un degre de libertéDuke Mathematical Journal, 1982
- New approach to the semiclassical limit of quantum mechanicsCommunications in Mathematical Physics, 1981
- Pointwise bounds on eigenfunctions and wave packets inN-body quantum systemsCommunications in Mathematical Physics, 1981
- Comportement semi-classique du spectre des hamiltoniens quantiques elliptiquesAnnales de l'institut Fourier, 1981
- Double WellsCommunications in Mathematical Physics, 1980
- On the rate of asymptotic eigenvalue degeneracyCommunications in Mathematical Physics, 1978
- Morse Theory. (AM-51)Published by Walter de Gruyter GmbH ,1963
- Bounds for the Discrete Part of the Spectrum of a Semi-Bounded Schrödinger Operator.MATHEMATICA SCANDINAVICA, 1960