The pineal neurohormone melatonin prevents in vivo and in vitro apoptosis in thymocytes
- 1 November 1995
- journal article
- Published by Wiley in Journal of Pineal Research
- Vol. 19 (4) , 178-188
- https://doi.org/10.1111/j.1600-079x.1995.tb00187.x
Abstract
Recently, melatonin was found to be the most potent physiological free radical scavenger known to date. In this work, we attempted to define the role this neurohormone plays in the regulation of apoptosis, since the effect of bcl-2, the main gene implicated in its inhibition, acts via an antioxidant mechanism. We investigated the role of melatonin in cell death of thymus, a well known model for the study of apoptosis. Two sets of experiments were carried out: in vivo experiments, performed with Wistar rats, and in vitro experiments, performed with primary cultures of young Wistar rat thymocytes treated with glucocorticoids in order to induce apoptosis. Morphometrical studies in semithin sections of thymus and analysis of DNA fragmentation by gel electrophoresis show that physiological apoptosis occurring in thymus of 65 days old rats, is prevented by the daily administration of melatonin beginning when the rats were 25 days old. Also, we found that at a concentration of 10−7 M, melatonin decreases by 35% the percentage of apoptotic cells induced by glucocorticoids in cultured thymocytes of 25 day old rats. 10−9 M melatonin decreases cell death by 20%. Finally, melatonin at 10−11 Mdid not have any effect. Several hypothesis are discussed to explain this effect: direct interaction of melatonin with glucocorticoid receptors in the thymus; induction of interleukin-4 release; direct genomic action modulating the expression of apoptosis-inhibiting genes; an effect on nitric oxide synthase; and finally, the antioxidant action of melatonin. Since apoptosis is a possible mechanism involved in neuronal death shown in several neurodegenerative diseases such as Parkinson or Alzheimer's diseases, investigative efforts should be directed to the possible role of melatonin in inhibiting cell death in tissues other that the thymus. Melatonin might be a potent therapeutic agent in some of these conditions.Keywords
This publication has 52 references indexed in Scilit:
- Porphyrin accumulation in the harderian glands of female Syrian hamster results in mitochondrial damage and cell deathThe Anatomical Record, 1994
- Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellumLife Sciences, 1994
- Cell death and the cell cycle: a relationship between transformation and neurodegeneration?Trends in Biochemical Sciences, 1993
- Melatonin, hydroxyl radical‐mediated oxidative damage, and aging: A hypothesisJournal of Pineal Research, 1993
- The immunoneuroendocrine role of melatoninJournal of Pineal Research, 1993
- Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.The Journal of cell biology, 1992
- Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neuronsBiochemical and Biophysical Research Communications, 1991
- The p53 tumour suppressor geneNature, 1991
- Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell deathNature, 1990
- Redox Regulation of Fos and Jun DNA-Binding Activity in VitroScience, 1990