Effects of the Enediyne C-1027 on Intracellular DNA Targets

Abstract
We examined DNA damage induced by the enediyne-containing antitumor antibiotic C-1027 in intracellular nuclear and mitochondrial DNA targets using the episome-containing cell line 935.1. Strand-scission activity of the C-1027 holoantibiotic was measured by the topological forms conversion assay in episomal and mitochondrial DNA, as well as in cell-free plasmid DNA. Genomic DNA damage was quantitated by filter elution analysis. Comparisons were made to the well-characterized enediyne neocarzinostatin. From these studies, mixed single- and double-strand breaks were observed not only in cell-free, plasmid DNA but also in intracellular episomal, mitochondrial, and genomic DNA at low nanomolar concentrations. C-1027 cleaved DNA 285-fold more efficiently in cells than in a cell-free environment, and displayed preference for intracellular DNA species in the following rank order: episome > mitochondrial DNA > genomic. NCS also damaged the non-histone-associated mitochondrial DNA, but not the episome. Cleavage of the 935.1 cell episome by C-1027 occurred at specific sites including the BPV origin of replication and E6/E7 open reading frame regions, as well as the MMTV LTR promoter region.

This publication has 0 references indexed in Scilit: