In Part I of this study an analytical model for a steady-state tropical cyclone is constructed on the assumption that boundary-layer air parcels are conditionally neutral to displacements along the angular momentum surfaces of the hurricane vortex. The reversible thermodynamics implied by this assumption allows the mature storm to be thought of as a simple Carnot engine, acquiring heat at the high-temperature ocean surface and losing heat near the low-temperature tropopause. Although the oceanic heat source is universally recognized as the sine qua non for the mature hurricane, there is also wide acceptance of conditional instability of the second kind (CISK) (which makes no specific reference to surface heat fluxes) as the formative mechanism. This ambivalence is seen in that all numerical-simulation studies find it essential to have transfer from the ocean surface yet all start from a conditionally unstable atmosphere. The hypothesis put forward in Part I, based on the steady-state theory, is t... Abstract In Part I of this study an analytical model for a steady-state tropical cyclone is constructed on the assumption that boundary-layer air parcels are conditionally neutral to displacements along the angular momentum surfaces of the hurricane vortex. The reversible thermodynamics implied by this assumption allows the mature storm to be thought of as a simple Carnot engine, acquiring heat at the high-temperature ocean surface and losing heat near the low-temperature tropopause. Although the oceanic heat source is universally recognized as the sine qua non for the mature hurricane, there is also wide acceptance of conditional instability of the second kind (CISK) (which makes no specific reference to surface heat fluxes) as the formative mechanism. This ambivalence is seen in that all numerical-simulation studies find it essential to have transfer from the ocean surface yet all start from a conditionally unstable atmosphere. The hypothesis put forward in Part I, based on the steady-state theory, is t...