Tunable ferromagnetic resonance peak in tunneling magnetoresistive sensor structures

Abstract
Noise properties of submicron scale tunneling magnetoresistive (TMR) sensors were investigated at frequencies up to 3 GHz. Noise spectral density was measured as a function of frequency, applied field, and bias current. Noise spectral density versus frequency dependence exhibits a pronounced peak, tunable over a wide frequency range. This peak appears to originate from current-driven precession of magnetization. The peak center frequency can be as low as 200 MHz and has a strong dependence on applied field and bias current. The damping constant α of the main precession mode in the TMR sensor free layer was found to be in the range of 0.05–0.18. It is shown that the magnetic state of a magnetoresistive sensor depends on the bias current and may be characterized by noise properties. The magnetoresistive element can operate as a source of high-frequency radiation with 1 nW emitting power from a 0.1 μm2 junction and signal to noise ratio of 10 dB.