Studies on crossover-specific mutants and the distribution of crossing over in Drosophila females
- 1 October 2004
- journal article
- Published by S. Karger AG in Cytogenetic and Genome Research
- Vol. 107 (3-4) , 160-171
- https://doi.org/10.1159/000080594
Abstract
In Drosophila females, the majority of recombination events do not become crossovers and those that do occur are nonrandomly distributed. Furthermore, a group of Drosophila mutants specifically reduce crossing over, suggesting that crossovers depend on different gene products than noncrossovers. In mei-218 mutants, crossing over is reduced by approximately 90% while noncrossovers and the initiation of recombination remain unchanged. Importantly, the residual crossovers have a more random distribution than wild-type. It has been proposed that mei-218 has a role in establishing the crossover distribution by determining which recombination sites become crossovers. Surprisingly, a diverse group of genes, including those required for double strand break (DSB) formation or repair, have an effect on crossover distribution. Not all of these mutants, however, have a crossover-specific defect like mei-218 and it is not understood why some crossover-defective mutants alter the distribution of crossovers. Intragenic recombination experiments suggest that mei-218 is required for a molecular transition of the recombination intermediate late in the DSB repair pathway. We propose that the changes in crossover distribution in some crossover-defective mutants are a secondary consequence of the crossover reductions. This may be the activation of a regulatory system that ensures at least one crossover per chromosome, and which compensates for an absence of crossovers by attempting to generate them at random locations.Keywords
This publication has 3 references indexed in Scilit: