Local Convergence of Secant Methods for Nonlinear Constrained Optimization
- 1 June 1988
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Numerical Analysis
- Vol. 25 (3) , 692-712
- https://doi.org/10.1137/0725042
Abstract
No abstract availableKeywords
This publication has 17 references indexed in Scilit:
- On the Convergence of Constrained Optimization Methods with Accurate Hessian Information on a SubspaceSIAM Journal on Numerical Analysis, 1990
- A Convergence Theory for a Class of Quasi-Newton Methods for Constrained OptimizationSIAM Journal on Numerical Analysis, 1987
- Continuity of the null space basis and constrained optimizationMathematical Programming, 1986
- On the Local Convergence of a Quasi-Newton Method for the Nonlinear Programming ProblemSIAM Journal on Numerical Analysis, 1984
- Inexact Newton MethodsSIAM Journal on Numerical Analysis, 1982
- On the Local Convergence of Quasi-Newton Methods for Constrained OptimizationSIAM Journal on Control and Optimization, 1982
- Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimizationPublished by Springer Nature ,1982
- Convergence Theorems for Least-Change Secant Update MethodsSIAM Journal on Numerical Analysis, 1981
- A characterization of superlinear convergence and its application to quasi-Newton methodsMathematics of Computation, 1974
- On the Local and Superlinear Convergence of Quasi-Newton MethodsIMA Journal of Applied Mathematics, 1973