Catalysis: New Perspectives from Surface Science

Abstract
One-sixth of the value of all goods manufactured in the United States involves catalytic processes. However, in spite of this dramatic economic impact, little is known about this broad subject at the molecular level. In the last two decades a variety of techniques have been developed for studying at the atomic level the structure, composition, and chemical bonding at surfaces. These techniques have been used to study adsorption and reaction on metal single crystals in an ultrahigh vacuum environment or to analyze catalysts before and after reaction. An important new development has been the coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis. This approach has demonstrated that metal single crystals can be used to successfully model many important catalytic reactions and has established a direct link between the results of ultrahigh vacuum surface measurements and the chemistry that occurs under typical catalytic-processing conditions.