Abstract
The existence of convection and the hurricane-like structure in the explosively-developing cyclone studied in Part I motivates us to assess the importance heating had on this cyclogenesis. To accomplish this, a method to evaluate the three-dimensional thermodynamic and dynamic structure of the atmosphere is proposed, so that we may evaluate potential vorticity changes in the vicinity of this cyclone. Results indicate a 24 h lower tropospheric generation of from five to thirteen times the value observed at 1200 GMT 9 September 1978. An evaluation of physical effects on thickness change following the surface center shows a large mean tropospheric temperature rise to be due to bulk cumulus heating effects, which could be important in the extraordinary potential vorticity generation concurrent with this cyclone's explosive development. These vertically integrated values of heating motivate us to solve the quasi-geostrophic omega and vorticity equations forced by an idealized heating function with spe... Abstract The existence of convection and the hurricane-like structure in the explosively-developing cyclone studied in Part I motivates us to assess the importance heating had on this cyclogenesis. To accomplish this, a method to evaluate the three-dimensional thermodynamic and dynamic structure of the atmosphere is proposed, so that we may evaluate potential vorticity changes in the vicinity of this cyclone. Results indicate a 24 h lower tropospheric generation of from five to thirteen times the value observed at 1200 GMT 9 September 1978. An evaluation of physical effects on thickness change following the surface center shows a large mean tropospheric temperature rise to be due to bulk cumulus heating effects, which could be important in the extraordinary potential vorticity generation concurrent with this cyclone's explosive development. These vertically integrated values of heating motivate us to solve the quasi-geostrophic omega and vorticity equations forced by an idealized heating function with spe...