Abstract
High affinity agonist-binding (HAB) sites are formed from specific receptor interaction with guanine nucleotide-binding (Gi) proteins. To determine whether the release of endothelium-derived relaxing factor (EDRF) is regulated by specific receptor-Gi protein coupling, we treated bovine aortic endothelial cells with 100 ng/ml pertussis toxin (PTX) for 16 hours to effect receptor-Gi protein uncoupling. The degree of receptor uncoupling as measured by the loss of HAB sites for the alpha 2-adrenergic receptor and bradykinin receptor was assessed by radioligand binding studies using partially purified bovine aortic endothelial cell membranes. The release of EDRF in response to UK14304 (an alpha 2-adrenergic receptor agonist) and bradykinin stimulation was measured with a bioassay apparatus. The Gi protein isoforms were characterized by Western blotting, and complete ADP-ribosylation of these proteins was confirmed by PTX-catalyzed [32P]NAD ribosylation. PTX produced a greater inhibition of EDRF release via the alpha 2-adrenergic receptor pathway compared with the bradykinin receptor pathway (80% versus 46%, p less than 0.01). This corresponded to the loss of HAB sites from the alpha 2-adrenergic receptor and bradykinin receptor pathway (72% versus 46%, p less than 0.01) as compared with complete loss of both HAB sites in the presence of GppNHp (0.1 mM). Since loss of HAB sites from PTX-mediated receptor uncoupling parallels the inhibition of EDRF release, these data suggest that Gi proteins contribute to a greater proportion of HAB sites derived from alpha 2-adrenergic receptor rather than bradykinin receptor interaction and that the inhibition of EDRF release by PTX is mainly due to the loss of these HAB sites.(ABSTRACT TRUNCATED AT 250 WORDS)