Abstract
Advances in high spectral resolution sensors and in data handling capabilities are enabling development of greatly improved remote-sensing devices for resource monitoring, so that design trade-offs are required. A methodology for optimizing selection of spectral bands for multispectral instruments such as those on the LANDSAT series of satellites is described. The method is applied to a collection of laboratory and outdoor spectra of natural and artificial materials. These reflectance spectra represent the visible and near-infrared spectral ranges at high (0.01-μm) spectral resolution. For most natural materials 15–25 spectral bands appear to be sufficient to describe spectral variability, whereas description of minerals and some artificial substances may require double this number of bands.

This publication has 8 references indexed in Scilit: