Tritium Absorption in Type 304L Stainless Steel

Abstract
Tritium absorption was determined in Type 304L austenitic stainless steel by analyzing concentration gradients obtained during prolonged exposures to high-pressure gaseous tritium. The calculated tritium diffusivities at temperatures greater than 373 K were shown to be in excellent agreement with the equation where m is the isotopic mass. This equation was previously developed for deuterium in several types of austenitic stainless steels. There was strong evidence for “short-circuit” diffusion paths and a grain size effect on tritium absorption. Such effects are assumed to cause the tritium diffusivities measured for exposures at less than 373 K to be higher than expected from the above equation. Cold work, either prior to or during exposure, significantly increased the effective tritium diffusivity. The increase in tritium diffusivity observed in the samples cold-worked prior to exposure is believed to be caused by preferential (short-circuit) diffusion through strain-induced martensite. The incr...