Comparative analysis of the biogenesis of photosystem II in the wild-type and Y-1 mutant of Chlamydomonas reinhardtii.
Open Access
- 1 March 1988
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 106 (3) , 609-616
- https://doi.org/10.1083/jcb.106.3.609
Abstract
Expression of the genes of the photosystem II (PSII) core polypeptides D1 and D2, of three proteins of the oxygen evolving complex of PSII and of the light harvesting chlorophyll a/b binding proteins (LHCP) has been compared in wild-type (wt) and in the y-1 mutant of Chlamydomonas reinhardtii. Since wt, but not y-1 cells produce a fully developed photosynthetic system in the dark, comparison of the two has allowed us to distinguish the direct effect of light from the influence of plastid development on gene expression. The PSII core polypeptides and LHCP are nearly undetectable in dark-grown y-1 cells but they accumulate progressively during light induced greening. The levels of these proteins in wt are the same in the light and the dark. The amounts of the proteins of the oxygen evolving complex do not change appreciably in the light or in the dark for both wt and y-1. Steady state levels of chloroplast mRNA encoding the core PSII polypeptides remain nearly constant in the light or the dark and are not affected by the developmental stage of the plastid. Levels of nuclear encoded mRNAs for the oxygen evolving proteins and of LHCP increase during light growth in wt and y-1. In contrast to wt, synthesis of LHCP proteins is not detectable in y-1 cells in the dark but starts immediately after transfer to light, indicating that LHCP synthesis is controlled by a light-induced factor or process. While the rates of synthesis of D1 and D2 are immediately enhanced by light in wt, this increase occurs only after a lag in y-1 and thus must be dependent on an early light-induced event in the plastid. These results show that the biosynthesis of PSII is affected by light directly, by the stage of plastid development, and by the interaction of light and events associated with plastid development.Keywords
This publication has 38 references indexed in Scilit:
- Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtiiJournal of Molecular Biology, 1986
- The light‐dependent accumulation of the P700 chlorophyll a protein of the photosystem I reaction center in barleyEuropean Journal of Biochemistry, 1986
- Regulation of synthesis of the photosystem I reaction center.The Journal of cell biology, 1983
- Regulation of light-harvesting chlorophyll-binding protein (LHCP) mRNA accumulation during the cell cycle in chlamydomonas reinhardiCell, 1983
- Sequence of the chloroplast DNA region of Chlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genesJournal of Molecular Biology, 1982
- Regulation of accumulation of the major thylakoid polypeptides in Chlamydomonas reinhardtii y-1 at 25 degrees C and 38 degrees C.The Journal of cell biology, 1982
- Transport of proteins into mitochondria and chloroplasts.The Journal of cell biology, 1979
- Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardiiJournal of Molecular Biology, 1978
- CONTROL OF THE SYNTHESIS OF A MAJOR POLYPEPTIDE OF CHLOROPLAST MEMBRANES IN CHLAMYDOMONAS REINHARDI The Journal of cell biology, 1973
- Transcriptional mapping of ribosomal RNA genes of the chloroplast and nucleus of Chlamydomonas reinhardiJournal of Molecular Biology, 1971