Abstract
The cat dorsal lateral geniculate nucleus (LGN) was examined at the light- and electron-microscopic level after immunocytochemistry for GAD (the synthesizing enzyme of the inhibitory neurotransmitter GABA), to identify cells and processes with GAD-like immunoreactivity. GAD-positive perikarya were distributed throughout the A and C laminae, constituting a moderate proportion of cells in the LGN. Labeled cells were characterized by small size, scant cytoplasm, relatively large nuclei with common indentations, small mitochondria, few organelles and few strands of rough endoplasmic reticulum. Unlabeled cells were of large, medium and small size. GAD-positive terminals were identified as F1 and F2 types (Guillery's nomenclature) on the basis of their synaptic relations and ultrastructure. Labeled F2 terminals were postsynaptic to retinal (RLP) boutons and presynaptic to unlabeled dendrites in synaptic glomeruli. Labeled F1 terminals made synapses on unlabeled somata and dendrites, and on labeled dendrites and F2 terminals. Presumably, most labeled F1 terminals originate from GABAergic perigeniculate axons. Retinal (RLP) and cortico-geniculate (RSD) boutons remained unlabeled in the reative zone. These terminals made synapses with labeled and unlabeled dendrites and with labeled F2 boutons. In conjunction with previous studies on GAD-positive cells in the perigeniculate nucleus, these results provide immunocytochemical and morphological evidence suggesting that the GABAergic intrinsic and extrinsic (perigeniculate) interneurons mediate the different inhibitory phenomena which occur in relay cells of the cat LGN. The ultrastructural features and synaptic relations of GABAergic cells and processes in the cat LGN are similar to those of equivalent neural elements in the LGN of rat and monkey, suggesting general principles of organization and morphology for GABAergic neurons in the thalamus of different mammals.