An interacting spin flip model for one-dimensional proton conduction
Preprint
- 3 December 2002
Abstract
A discrete asymmetric exclusion process (ASEP) is developed to model proton conduction along one-dimensional water wires. Each lattice site represents a water molecule that can be in only one of three states; protonated, left-pointing, and right-pointing. Only a right(left)-pointing water can accept a proton from its left(right). Results of asymptotic mean field analysis and Monte-Carlo simulations for the three-species, open boundary exclusion model are presented and compared. The mean field results for the steady-state proton current suggest a number of regimes analogous to the low and maximal current phases found in the single species ASEP [B. Derrida, Physics Reports, {\bf 301}, 65-83, (1998)]. We find that the mean field results are accurate (compared with lattice Monte-Carlo simulations) only in the certain regimes. Refinements and extensions including more elaborate forces and pore defects are also discussed.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: