Abstract
To define the role of inorganic electrolyte secretion in hepatic bile formation, the effects of secretin, glucagon, and differently structured bile acids on bile flow and composition were studied in the dog, guinea pig, and rat. In the dog and guinea pig, secretin (2.5–10 clinical units∙kg−1∙30 min−1) increased bile flow and bicarbonate concentration in bile, a finding consistent with the hypothesis that the hormone stimulates a bicarbonate-dependent secretion possibly at the level of the bile ductule–duct. In the rat, secretin (5–15 CU∙kg−1∙30 min−1) failed to increase bile secretion. Glucagon (1.25–300 μg∙kg−1∙30 min−1) increased bile flow in all the three species, and produced no changes in biliary bicarbonate concentrations in the dog and rat. In the guinea pig, however, glucagon choleresis was associated with an increase in bicarbonate concentration in bile, similar to that observed with secretin. The choleretic activities of various bile acids (taurocholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, and ursodeoxycholic acid, infused at 30–360 μmol∙kg−1∙30 min−1) were similar in the rat (6.9–7.2 μL/μmol), but different in the guinea pig (11–31 μL/μmol). In the latter species, the more hydrophobic the bile acid, the greater was its choleretic activity. In all instances, bile acid choleresis was associated with a decline in the biliary concentrations of chloride, but with no major change in bicarbonate levels. The prominent finding of these studies is that, regardless of whether bile flow was stimulated by hormones or different bile acids, bicarbonate concentrations in bile were always similar to or higher than those in plasma. This is construed to support the view that bicarbonate is transported into bile, possibly at multiple sites within the biliary tree. Its excretion most likely provides the driving force for hormone-induced choleresis, and may in part account for the flow of bile associated with bile acid secretion.

This publication has 12 references indexed in Scilit: