Hydrophobic solvation of nonspherical solutes

Abstract
The theory of hydrophobic effects presented by Pratt and Chandler is generalized to include nonpolar solutes which are distinctly aspherical. The theory is used to study the solvation of simple aspherical hydrocarbon solutes in liquid water. The radial solvation of each component of diatomiclike solutes is studied as a function of their separation, or bond length. From these results it is found that when the bond length is large enough that one water molecule can fit between the apolar pair, the radial solvation of each is the same as that when the bond length approaches infinity. The solvation of the various sites of the homologous series methane, ethane, propane, and n‐butane is also studied, and effects of the geometrical structure of the solutes on their solvation is discussed.