Abstract
Many things will have to go right for quantum computation to become a reality in the lab. For any of the presently-proposed approaches involving spin states in solids, an essential requirement is that these spins should be measured at the single-Bohr-magneton level. Fortunately, quantum computing provides a suggestion for a new approach to this seemingly almost impossible task: convert the magnetization into a charge, and measure the charge. I show how this might be done by exploiting the spin filter effect provided by ferromagnetic tunnel barriers, used in conjunction with one-electron quantum dots.Comment: 11 pages, LaTeX, 1 figure. To be published in J. Appl. Phys., paper given at the 43rd Annual MMM Conferenc
All Related Versions