Abstract
A large number of statistical forecasting procedures for univariate time series have been proposed in the literature. These range from simple methods, such as the exponentially weighted moving average, to more complex procedures such as Box–Jenkins ARIMA modelling and Harrison–Stevens Bayesian forecasting. This paper sets out to show the relationship between these various procedures by adopting a framework in which a time series model is viewed in terms of trend, seasonal and irregular components. The framework is then extended to cover models with explanatory variables. From the technical point of view the Kalman filter plays an important role in allowing an integrated treatment of these topics.

This publication has 49 references indexed in Scilit: