Locally Critical Point in an Anisotropic Kondo Lattice

Abstract
We report the first numerical identification of a locally quantum critical point at which the criticality of the local Kondo physics is embedded in that associated with a magnetic ordering. We are able to numerically access the quantum critical behavior by focusing on a Kondo-lattice model with Ising anisotropy. We also establish that the critical exponent for the q-dependent dynamical spin susceptibility is fractional and compares well with the experimental value for heavy fermions.