Experimental and Numerical Analysis of a Low Pressure Stoichiometric Methanol-Air Flame

Abstract
A stoichiometric methanol-air flame stabilized at low pressure was investigated by coupling gas chromatography and electron spin resonance in order to verify a postulated chemical mechanism for methanol combustion. To interpret experimental investigation two codes, based on the CHEMKIN code package, are used: CALFLA, a code calculating the net reaction rates and PREM1X, the flame modeling code from SANDIA. The experimental and modeled results are compared in terms of species mole fraction profiles and, more significantly, in terms of net reaction rate profiles. Furthermore, ihe formation and consumption rates of different species, as well as a first order sensitivity analysis are used in order to describe the importance of the different reactions throughout the flame. The experimental results are in good agreement with the computed values analyzed in terms of the Dove-Warnatz mechanism.