X‐Ray and Sunyaev‐Zel’dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters

Abstract
We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel'dovich Effect measurements. We use three models for the gas distribution: (1) an isothermal beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data,(2) a non-isothermal double beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core in clusters with a wide range of morphological properties. The X-ray and SZE determinations of mean gas mass fractions for the 100 kpc-cut isothermal beta-model are fgas(X-ray)=0.110 +0.003-0.003 +0.006-0.018 and fgas(SZE)=0.116 +0.005-0.005 +0.009-0.026, where uncertainties are statistical followed by systematic at 68% confidence. For the non-isothermal double beta-model, fgas(X-ray)=0.119 +0.003-0.003 +0.007-0.014 and fgas(SZE)=0.121 +0.005-0.005 +0.009-0.016. For the SZE-only model, fgas(SZE)=0.120 +0.009-0.009 +0.009-0.027. Our results indicate that the ratio of the gas mass fraction within r2500 to the cosmic baryon fraction is 0.68 +0.10-0.16 where the range includes statistical and systematic uncertainties. By assuming that cluster gas mass fractions are independent of redshift, we find that the results are in agreement with standard LambdaCDM cosmology and are inconsistent with a flat matter dominated universe.Comment: ApJ, submitted. 47 pages, 5 figures, 8 table
All Related Versions